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Abstract

Since Bell Labs successfully manufactured the first transistor in 1960, the rapid
advancement of semiconductor technology has progressively grown to be a significant
indication of technological advancement thanks to Moore's Law. Now, semiconductor
manufacturing technology continues to lead the advancement of technology in all the
aspects. First, based on the footsteps of the original Moore's Law, nowadays
semiconductor manufacturing technology has benefited from the emergence of extremely
deep ultraviolet (EUV)-making the scaling node reach the 3nm, but the relative process
cost and the process yield are also greatly affected. As a result, it becomes increasingly
challenging to realize Moore's Law as new scaling nodes are developed and silicon-based
FETs are constrained by physical scaling laws which generates significant development
cost. The second development direction focuses on the improvement of the performance
and the miniaturization of integrated circuits by integrating multiple $ystem function
chips, which is called More Than Moore, Compared with Moore's Law, More Than
Moore is not limited to the size reduction of a single transistor, but capable of achieving
the goal of low cost and multi-function instead. F inally, in response to the booming era
of electric vehicles and 5G communications, the characteristics of Si materials limit the
efficiency of power conversion and the frequency of operation. Wide-band-gap Gailium

nitride and silicon carbide are examples of the third-generation semiconductor materials
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that are valued more and more by the market. In particular, gallium nitride is based on
wide band gaps, high critical electric fields, and high electron saturation velocities, which
makes it the basis for GaN high electron mobility transistors (GaN HEMTS), which are
highly effective in consumer electronics products such as fast charging applications, base
stations for 5G communication, or automotive electronic components.

As a result, in Chapter 3, how the scaling of the device size affects the hot carrier
degradation process of n-FinFET and p-FInFET is examined. It is discovered that the
threshold voltage shift of p-FinFET grows abnormally earlier than that of n-FinFET with
the gate voltage of the hot carrier degradation condition raised. Besides, by extracting the
distribution of both T x (:—2)"2'7 - Ip, it is found that multiple-vibration excitation
occurs more easily in p-FinFET than in n-FinFET, which leads to a severe threshold
voltage shift.

In Chapter 4, the off-state leakage generated by p-FinFET under the instability test
at high temperatures with negative bias temperature instability is discussed. In the linear
region, it is discovered that the off-state leakage of p-FinFET rises abnormally after NBTI
and that the leakage is positively connected with temperature based on the various
temperature measurements. It is discovered that the anomalous leakage current in the
linear area is produced by trap-assisted thermal field emission by the comparison of the

forward and reverse sweep characteristics of the current in the linear region and the
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performance of the hot carrier degradation. Therefore, in Chapter 5, the characteristics
and reliability of HV FinFETs under the Fin structure is analyzed by adjusting the doping
of the nLDD region.

Among many system function chips, driver ICs and power management ICs are
indispensable. Although FinFETs with 3D structures are easy to shrink, it is difficult to
meet the requirements of high voltage operation. It is found that boron doping at the
nLDD can suppress the hot carrier degradation by increasing the void width at the nLDD
and that the diffusion of boron doping also affects the reliability of the device. Therefore,
the comparison of the effects of different fluorine doping concentrations on the hot carrier
degradation is made. Transconductance or subcritical swing exhibit better reliability
during the hot carrier degradation with fluorine doping concentration increasing,
regardless of the threshold voltage, and it is discovered that with fluorine concentration
increasing, the degradation region of the device is concentrated more in the drain region.
Finally, through the analysis of random telegraph signals, it is confirmed that the boron
diffusion will indeed reduce the reliability and increase the noise of high-frequency
signals.

The hot electron stress (HES) degradation process in the semi-on state of the GaN
HEMT is covered in Chapter 6. This chapter examines the unusual occurrence when Vr

keeps shifting in the positive direction, following a hot electron stress; such trend is
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continued during the recovery phase. Here is a model that is put out to account for this
occurrence. As a result of the high drain voltage state experienced during HES, hot holes
are created in the channel due to the channel's electrons being accelerated by the lateral
electric field. These holes then recombine with trapped electrons in the buffer defects
which causes a significant positive shift in Vr. Finally, it is established through the
measurements of negative bias stress (NBS), light recovery, and the results of Silvaco
simulations that the aberrant Vr shift during recovery is caused by channel electrons
refilling the buffer defects.

Keywords: FinFETs, Hot Carrier stress, Negative bias temperature instability, Low

noise frequency, GaN HEMT
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