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Abstract

With the recent development of technologies such as 5G communication, AIOT, and
electric vehicles, the application of high-performance calculation (HPC) and power
devices has been becoming increasingly important. Metal oxide half-field-effect
transistors (MOSFETS) are main components in HPC and power components, and
MOSFETs have different technical developments depending on the application field.
With the increase in power demand and the rise of energy-saving awareness, how to
reduce conduction and switching losses has become more and more crucial in power
devices. For the application of Industry 4.0, the design and technology development of
silicon(St) components has undergone several structural changes and process
optimization, which, however, has gradually approached the limit of silicon materials.
Silicon carbide (SiC), one of the wide band-gap semiconductor materials, features wide
bandgap, high critical electric field and high thermal conductivity, compared with Si.
Therefore, SiC is expected to replace Si as a new high-power component material. The
applications include power converters, automotive electronics, smart grids, large vehicles,
efc. So far, the United States, Japan, Europe, and other countries have launched several
large-scale projects to carry out related research, which shows the potential of silicon
carbide (SiC) in the commercial and military markets.

MOSFETs used in HPC continue to shrink with Moore's Law, and the gate oxide
layer is also scaling. When the oxide thickness isreduced to only 1 nm, quantum tunneling
leakage is likely to occur, which results in additional gate leakage and reliability issues.
Therefore, high diclectric constant is introduced, which can maintain excellent gate
control force at a thicker physical thickness. To improve the operating speed of the device,
the polysilicon gate is also replaced with metal gate. In order to meet the gate voltage

requirements of logic IC, it is necessary to design various threshold voltages of MOSFET:.
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At present, the threshold voltage is mainly modulated by the multi-layer work function
metal process. As the size of the transistor shrinks, the area of the gate work function
metal stack is getting smaller and smaller, When the multi-layer work function metal is
used to modulate the threshold voltage,-the gate resistance will be increased and-the
operating speed of devices will be reduced. Therefore, the dipole layer process has been
introduced recently to modulate the threshold voltage. The dipole layer is formed by
doping other elements into hafhium oxide, such as Aluminum and Lanthanum. Due to the
difference in the interfacial oxygen density, the dipoles will be formed at the interface of
the oxide layer, thereby modulating the threshold voltage.

This dissertation will focus on the performance and reliability of SiC MOSFETs,
silicon carbide junction barrier schottky diodes (SiC JBS) and dipole MOSCAP. The first
part discusses the negative bias voltage reliability (NBS) of SiC Junction Barrier Schottky.
Power diodes are mainly used as switching and rectifier components. The most important
parameters are breakdown voltage, reverse bias leakage and reverse recovery time, which
affect the performance and power consumption of components, respectively. Schottky
diodes i.s often used for rectifying and freewheeling because the reverse recovery time is
short, which is suitable for high-speed switching. However, the reverse leakage od
schottky diode is large, which results in extra power consumption. Junction barrier
schottky is a structure which contains low reverse recover time (Trr), low reverse bias
current (Ir) and high breakdown voltage (VBD), so this structure is mostly applied in
silicon carbide power diodes. SiC JBS is currently a very popular component with high
Veb (up to 12000V), low Trr, low Ig and high thermal stability. There have been many
studies on its related characteristics and reliability, but few on the reliability mechanism.
This paper finds that under the reverse bias reliability, the Vpp of SiC JBS increases

significantly, so this phenomenon will be studied.
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The second part discusses the physical mechanism of reverse bias voltage reliability
(NBS) of SiC MOSFETs. Although SiC MOSFETs have been commercialized in large
quantities, reliability is still an important issue, especially the gate bias voltage reliability,
among which the NBS is the most serious. Because the defects in the interface or gate
oxide are easily formed by the carbon clusters which are produced in the process of gate
oxidation on SiC MOSFETs. The defects result in the degradation of carrier mobility and
the instability of threshold voltage (Vr). This study analyzes the difference in the
mechanism of positive bias gate stress (PBS) and negative bias gate stress (NBS) and
further analyzes the physical mechanisms of NBS.

The third part discusses the gate positive bias temperature instability (PBTI)
reliability of Dipole MOSCAPs. It is found that doping a dipole at the bottom of hafnium
oxide increases the gate capacitance and reduces the gate leakage, but the degradation of
reliability on the dipole doped MOSCAP is more serious, which may be the injection of
electrons or the generation of defects in the oxide layer. The serious degradation is due to
the energy band bending paused by the dipole. Under the positive bias, electrons tunneling
into the hafnium oxide layer will have greater kinetic energy, which generates the electron
injection and the defect generation in the dipole doped device more easily. In addition,
the time-dependent dielectric breakdown (TDDB) test is used to verify the degradation

of the device.

Keywords: Power Semiconductor devices, Silicon Carbide, SiC MOSFET, SiC JBS,

Dipole Dopped MOSCAP
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