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Abstract

Amorphous indium-gallium-zinc oxide thin-film transistors are crucial components

in display products owing to their exceptional material properties, including high carrier

mobility, extremely low off-state leakage current, large-area uniformity, and high

transparency to visible light. Therefore, they play essential roles in pixel switches of

displays and driving current sources of organic light emitting diodes. Furthermore, owing

to its advantage of low fabrication temperature, indium-gallium-zinc oxide

semiconductors have become indispensable devices in the back-end-of-line of logic chips.

However, despite the outstanding performances of indium-gallium-zinc oxide

semiconductors, their long-term stability remains a challenging issue. To date, numerous

studies have elucidated the deterioration of indium-gallium-zinc oxide semiconductors

after long-term operation. These studies include analysis of stress conditions under direct

current bias stresses, light irradiation, self-heating effects, or environmental atmospheres.

Nevertheless, with the evolution of new-generation technologies such as augmented

reality/virtual reality displays and its applications in advanced logic chips, their reliability

under high-frequency/high-switching-rate conditions have become particularly

significant. Therefore, this dissertation will focus on analyzing the deterioration of

indium-gallium-zinc oxide semiconductor devices under these conditions and propose

corresponding physical models. Additionally, within this dissertation, we will discuss the
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reliability challenges faced when varying the device structure to enhance their operating

speed. Ultimately, our aim is to develop high- performance and reliability amorphous

indium gallium zinc oxide semiconductor devices that are suitable for diverse

applications.

In the first section of this study, we investigate the degradation model of etch-stop-

layer type amorphous-indium-gallium-zinc-oxide thin-film transistors under dynamic

switching operations. We observe a severe degradation of the threshold voltage in devices

after alternating current operations, while the devices exhibit high stability under direct

current operations. To further analyze the degradation model, we systematically discuss

the stress with different switching waveform, geometry of devices, and temperatures. The

results indicate that during the transition from accumulation to depletion, electrons will

perform trapping behaviors at the rear interface of the active layer. This is due to the

insufficient time for the channel layer to deplete carriers under a short falling time. Then,

these residual carriers in the channel are further trapped at the rear interface of the channel

when switching to the off-state voltage.

In the second section of this study, we investigate the instability of amorphous-

indium-gallium-zinc-oxide thin-film transistors with copper electrodes under positive

gate bias stress. To elevate the operating frequency of displays, copper metal is often

chosen over aluminum metal for lower resistance-capacitance delay in the metal wiring.
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However, we realized that the devices will experience severe copper ion migration at the

oxide layer after positive gate bias stress. We analyze the gate leakage throughout the

stress duration by the carrier transport behavior in insulators to understand the

degradation model. Additionally, to further observe the copper ions within the insulator

layer, we used the focus ion beam system to prepare the cross-section of devices, followed

by material analysis through the transmission electron microscopy system. The copper

signals obtained from the material analysis directly confirm the diffusion behavior.

In the third section of this study, we integrated heterojunction channels into top-gate

amorphous-indium-gallium-zinc-oxide thin-film transistors and achieved a high-

performance/high-reliability transistor. The heterojunction channel is composed of two

layers of indium-gallium-zinc oxide thin films with different metal ratios. The

introduction of a zinc-rich layer as the front channel layer not only serves as a diffusion

barrier layer which effectively suppresses the hydrogen diffusion behavior in short

channel devices, but also reduces the vertical electric field in the gate insulator. To further

validate this phenomenon, Silvaco TCAD simulations are conducted to systematically

discuss the device characteristic and reliability of heterojunction channel thin-film

transistors.

In the fourth section of this study, we demonstrate a nonvolatile optoelectronic

memory through utilizing a heterojunction channel in amorphous-indium-gallium-zinc-
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oxide thin-film transistors. By exploiting the carrier confinement effect of heterojunction
interfaces, we separated the carrier conduction and the charge storage at the front and
back bulk layers of the active region, respectively. This device exhibits a memory window
of 4.6 V, aread window of 10%, and an operating voltage requirement below 20 V. In terms
of charge storage capability, the memory retains its state for over 10 years and endures

more than 1000 cycles of repeated operations.

Keywords: Thin-Film Transistors, Alternating Current, Copper Diffusion,
Heterojunction Channel, Nonvolatile Memory, Amorphous Indium-
Gallium-Zinc Oxide
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