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Abstract

In recent years, the growing demand for higher data bandwidth, driven by
digitalization across various industries and the widespread use of smartphones, has fueled
the rapid development of 5G communication. Additionally, the increasing awareness of
environmental concerns and the rising demand for electric vehicles have led to a
continuous growth in the market's demand for power devices. These shifts in market
demand have prompted significant attention toward Gallium Nitride (GaN). GaN is
highly regarded for its advantages, including high electron mobility, excellent thermal
stability, and a high breakdown voltage. Therefore, GaN High Electron Mobility
Transistors (HEMTS) are particularly anticipated for high-frequency and high-voltage
applications. However, power conversion systems always generate heat during operation,
which can affect other components, such as central processing units. Silicon-based Fin
Field-Effect Transistors (FInFETS), as the most widely used devices in logic operations,
exhibit degradation mechanisms closely related to environmental temperature. Therefore,
this dissertation primarily focuses on analyzing the electrical characteristics and
reliability issues of GaN HEMTs and silicon-based FIinFETSs through electrical properties,
reliability testing, and electrical simulations.

In Chapter 3, this dissertation explores the three-stage leakage mechanisms in p-

GaN HEMTs. Through the investigation of leakage current contributions at various
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endpoints, repeated experiments on leakage measurements, low/high voltage off-state

stress tests, and temperature-dependent off-state stress tests, the mechanisms at each stage

are clarified. These stages are primarily dominated by punch-through leakage, gate

electron injection, and defect-assisted thermal field emission. Once the leakage

mechanisms are elucidated, the introduction of variables like un-doped GaN (UGaN)

thickness and process temperature provides a feasible pathway for adjusting leakage

characteristics through process improvements. Experimental results ultimately reveal that

a thin UGaN layer and lower process temperatures offer the more effective suppression

of punch-through leakage. Conversely, a thick UGaN layer is more effective in curbing

current generation.

In Chapter 4, the dissertation examines the anomalous saturation current trends

between p-GaN HEMTs with low and high carbon doping concentration buffer layers.

The p-GaN HEMTSs with high carbon doping concentration buffer layers exhibit higher

current levels in the saturation region. This result contradicts the common understanding

that carbon doping reduces 2DEG concentration. The reasons behind this anomalous

trend are clarified through temperature experiments and saturation region stress tests. This

anomaly is due to the lower energy barrier in the GaN layer of p-GaN HEMTSs with low

carbon doping concentration buffer layers. Under saturation region conditions, hot

electron injection into the GaN layer occurs more easily, affecting current characteristics.

viii



Lastly, the impact of carbon doping concentration on the energy barrier is verified through

Silvaco TCAD simulations.

In Chapter 5, this dissertation investigates the Drain-Induced barrier lowering

(DIBL) effect saturation phenomenon in Schottky-gate GaN HEMTs. Utilizing Silvaco

TCAD simulations involving electric fields, energy band diagrams, and 2DEG

concentrations at various drain voltage (Vd), the analysis reveals that the saturation of the

DIBL effect is rooted in the T- gate structure. This gate structure has the ability to deplete

additional 2DEG under large Vg, thus dispersing the electric field that would normally

concentrate in the channel, consequently suppressing the DIBL effect. Finally, the thesis

examines the relationship between the ability to suppress DIBL and the geometric aspect

of the T-gate structure from the perspective of parasitic capacitance.

In Chapter 6, this dissertation explores the influence of temperature on the

degradation mechanisms in 60nm and 14nm FinFETs. Through fitting the mechanisms,

the impact of different voltage conditions on degradation mechanisms is clarified. With

increasing gate voltage (Vg), the Hot Carrier Stress (HCS) degradation mechanism

transitions from Single Vibrational Excitation (SVE) or Electron-Electron Scattering

(EES) mechanisms with relatively higher field dependence to the Multiple Vibrational

Excitation (MVE) mechanism with lower field dependence. In the 60nm sample, due to

the impact of phonon scattering, the part predominantly governed by SVE transitions to
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the EES mechanism as the temperature rises. In the 14nm sample at higher temperatures,

under higher Vg, the transition shifts from EES to MVE. Finally, the relationship between

lifetime (1) and temperature validates this argument.

Keywords: GaN HEMTs, Off-state Leakage, Drain Induced Barrier Lowering,
FinFETs, Hot Electron Effect
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