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Abstract

In recent years, the demand for automotive chips has been increasing with the rise
of electric vehicles and intelligent vehicles. The cost of automotive chips in the overall
vehicle cost has also been increasing year by year, from 1% in 1950 to 50% in 2030.
Among them, power management ICs (PMICs) play an important role in automotive
electronics. They can realize DC power protection, low static leakage current, and reduce
electromagnetic interference, which can effectively improve the battery life of electric
vehicles and the fuel efficiency of traditional vehicles. Applications cover advanced
driver assistance systems (ADAS), digital cockpits, and battery management. Therefore,
the performance and reliability of PMIC-related components are very important.

Advanced PMICs mainly use bipolar-CMOS-DMOS (BCD) technology to integrate
three different types of components on a single chip, and extract their own advantages
and functions, including: (1) Bipolar has high operating current, high linear transfer, and
low 1/f noise characteristics, which are used for signal amplification; (2) CMOS has small
size, anti-interference, and energy saving, which are used for digital computing; (3) The
high voltage tolerance of DMOS is used for high-power driving. In BCD technology, the
ideal DMOS has low on-state resistance (Ron) and high breakdown voltage (Vua). To
reduce Ron, DMOS uses a contact field plate (CFP) structure, which connects the field
plate to the gate, covers part of the drift region, and attracts minority carriers in the drift
region, which can reduce the resistance of the drift region and lower the overall Ron. To
improve Vg, the reduced-surface-field (RESURF) is used to improve the withstand
voltage of the drift region. The emergence of the CFP structure has improved the overall

performance of LDMOS, but there are still serious problems in terms of reliability.
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This work studies the reliability of LDMOS under non-conducting stress (NCS) and
hot carrier instability (HCI) tests. In the NCS test, it is found that LDMOS devices will
have a serious problem of linear region on-state current (Io,n) decrease after a period of
time. The analysis shows that the reason is in the resist protective oxide layer (RPO) of
the device. In the NCS process, the electrons are injected into RPO due to the influence
of the electric field, which causes the resistance of the drift region of the device to rise,
and finally affects Ron, which in turn increases the power consumption of the device.
Therefore, if the quality of RPO can be effectively improved, it can greatly improve the
application value of LDMOS.

In the HCI test, it is found that LDMOS devices will have Ion decrease and threshold
voltage (Vi) shift problems after a period of time. The analysis shows that the degradation
mechanism can be divided into two stages. The first stage is the collision ionization that
occurs under CFP, which leads to electron injection into RPO, resulting in o, degradation.
The second stage of degradation is the positive bias temperature instability (PBTI) effect
caused by Joule heat, which causes defects at the Si0,/Si interface in the device, and
injects the electrons from the channel into SiO», thereby increasing the subthreshold
swing (S.S.) of the device and causing Vi to change. Through temperature variation
experiments and TCAD simulation, it is proved that HCI will indeed produce serious
PBTI effects and cause device degradation in the long-term HCI process.

In the third part of this work, we study the performance improvement of fast recovery
diodes (FRD) by using supercritical fluid technology. Generally, MOSFETs will generate
an internal body diode due to their own structural characteristics during the manufacturing
process. This diode can protect MOSFETs from collapsing when an inverse voltage is
applied. However, in switch power applications, because the diodes need to be switched

quickly, the dynamic characteristics of the diodes have a great impact on the overall
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performance of MOSFETs. In order to improve the efficiency of the device, FRD are
usually connected in parallel to improve the switching efficiency. In order to achieve the
condition of fast switching, FRD are doped with metal as the recombination center of the
diode, so as to increase the recombination speed of minority carriers, so as to improve the
switching speed. However, the addition of metal will increase the energy level in Si,
which will lead to an increase in leakage current. In this section, using supercritical fluid
technology to passivate the defects in the devices, so that FRD can reduce leakage current
without affecting the switching characteristics. It will also use the capacitance-voltage
(C-V) characteristic curve to find the location of the defects and further propose the

corresponding physical model.

Keywords: Power Semiconductor devices, Bipolar-CMOS-DMOS (BCD), LDMOS,

Non-conducting stress (NCS), Hot carrier injection (HCI), Fast recovery diodes (FRD),

Supercritical fluid.
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